

Show ALL Work!

Section A4.2 – Discovering the Laws of Exponents: Product of Powers

The first law of exponents deals with multiplying powers. What happens when you multiply powers with the same base? Look for a pattern as you fill in the chart below. Use a calculator to evaluate each example, before and after you simplify it.

Example	Evaluate	Write in Expanded Form	Rewrite using Exponents	Evaluate
$2^3 \cdot 2^4$				
$3^4 \cdot 3^1$				
$5^4 \cdot 5^5$				
$7^2 \cdot 7^3$				
$(-2)^2 \cdot (-2)^3$				
$0.5^3 \cdot 0.5^2$				
$\left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right)^4$				
$x^m \cdot x^n$				

What patterns did you notice as you filled in the chart? What “shortcut” could you use for multiplying powers with the same base?

Show ALL Work!

Section A4.2 – Discovering the Laws of Exponents: Quotient of Powers

The second law of exponents deals with dividing powers. What happens when you divide powers with the same base? Look for a pattern as you fill in the chart below. Use a calculator to evaluate each example, before and after you simplify it.

Example	Evaluate	Write in Expanded Form	Rewrite using Exponents	Evaluate
$\frac{2^6}{2^4}$				
$\frac{5^7}{5^2}$				
$\frac{8^4}{8^2}$				
$\frac{7^8}{7^3}$				
$\frac{(-2)^9}{(-2)^3}$				
$3^6 \div 3^1$				
$\frac{x^m}{x^n}$				

What patterns did you notice as you filled in the chart? What “shortcut” could you use for dividing powers with the same base?

Show ALL Work!

Section A4.2 – Discovering the Laws of Exponents: Power of a Power

The next law of exponents deals with raising a power to a power. What happens when you raise a power to another power? Look for a pattern as you fill in the chart below.

Example	Write in Expanded Form	Rewrite Using Exponents
$(2^3)^2$		
$(3^2)^4$		
$(5^4)^3$		
$(7^2)^2$		
$\left[\left(\frac{1}{2}\right)^2\right]^5$		
$(x^m)^n$		

1. What patterns did you notice as you filled in the chart?

2. How do you think you can use these patterns to make an inference about the rule for raising a power to a power? Explain your thinking.

Show ALL Work!

Section A4.2 – Discovering the Laws of Exponents: Power of a Product

This law deals with multiplying expressions with the same exponent. What happens when you multiply expressions with the same exponent? Look for a pattern as you fill in the chart below. Use a calculator to evaluate each example, before and after you simplify it.

Example	Evaluate	Write in Expanded Form	Rewrite using Exponents	Evaluate
$(2 \cdot 5)^3$				
$2^3 \cdot 5^3$				
$(6 \cdot 3)^4$				
$6^4 \cdot 3^4$				
$(-4)^3 \cdot (-6)^3$				
$(-4 \cdot -6)^3$				
$(x \cdot y)^m$				

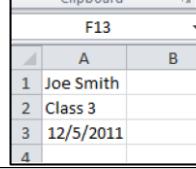
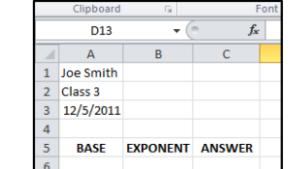
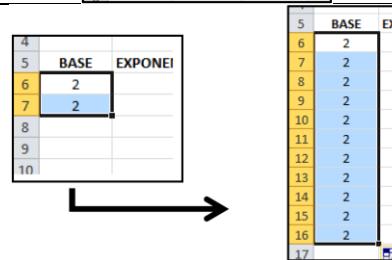
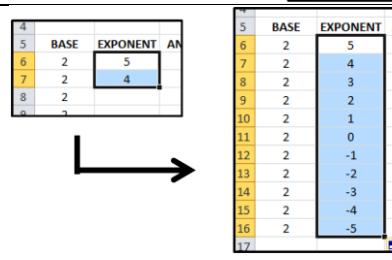
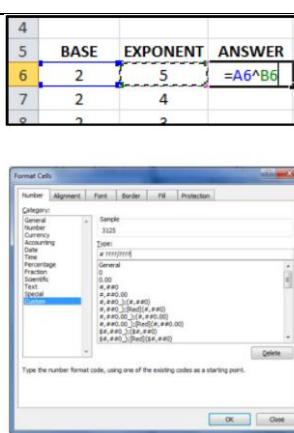
What patterns did you notice as you filled in the chart? What “shortcut” could you use for multiplying expressions with the same exponent?

Show ALL Work!

Section A4.2 – Discovering the Laws of Exponents: Power of a Quotient

This law deals with dividing expressions with the same exponent. What happens when you multiply expressions with the same exponent? Look for a pattern as you fill in the chart below. Use a calculator to evaluate each example, before and after you simplify it.

Example	Evaluate	Write in Expanded Form	Rewrite using Exponents	Evaluate
$\left(\frac{6}{2}\right)^3$				
$\frac{6^3}{2^3}$				
$\left(\frac{12}{4}\right)^4$				
$\frac{12^4}{4^4}$				
$\frac{(-27)^3}{(-3)^3}$				
$\left(\frac{-27}{-3}\right)^3$				
$\left(\frac{x}{y}\right)^m$				






What patterns did you notice as you filled in the chart? What “shortcut” could you use for dividing expressions with the same exponent?

Show ALL Work!

Section A4.2 – Discovering the Laws of Exponents: Zero and Negative

The next laws of exponents deal with zero and negative exponents. What happens when you raise a number to a power of zero? What happens when you raise a number to a negative power? Look for a pattern as you complete the activity below.

Part I: Creating the Excel Spreadsheet

Step	Directions	Picture
1	Open up Microsoft Excel.	
2	Type the following into the corresponding cells on the spreadsheet: <ul style="list-style-type: none"> In cell A1, type <u>your name</u> In cell A2, type <u>the class period</u> In cell A3, type <u>today's date</u> 	
3	In row five, label these 3 columns and format in BOLD : <ul style="list-style-type: none"> In cell A5, type <u>"BASE"</u> In cell B5, type <u>"EXPONENT"</u> In cell C5, type <u>"ANSWER"</u> 	
4	Fill in the column for BASE (the base will always be the same number): <ul style="list-style-type: none"> In cell A6, type <u>"2"</u> In cell A7, type <u>"2"</u> again Click and drag to select both cells Put your cursor at the lower right corner of the highlighted area (a plus sign should appear) Drag down to A16 to fill the other cells in this column with a 2 	
5	Fill in the column for the EXPONENT (this will range from -5 to 5) <ul style="list-style-type: none"> In cell B6, type <u>"5"</u> In cell B7, type <u>"4"</u> Click and drag to select both cells Put your cursor at the corner of the highlighted area (a plus sign should appear) Drag down to B16 to fill the other cells in this column from -5 to 5 	
6	Fill in the column for the ANSWER <ul style="list-style-type: none"> In cell C6, type <u>=A6^B6</u> and hit enter Select C6 and drag down to C16 to fill the cells. Each value in the "Answer" cell is what you get when you evaluate that power. With cells C6 to C16 still highlighted, tap the <u>Right</u> mouse button and click the Format Cells... section. Select Custom under the Category and type <u># ????/????</u> under Type. Click "OK" 	

Part II: Discovering the Laws

Experiment with the spreadsheet by changing the base and recording your answers in the table below. Look for patterns that will allow you to find the rule for evaluating zero and negative exponents.

Exponent	Base				
	2	3	4	5	6
5	$2^5 = 32$				
4	$2^4 =$				
3					
2					
1					
0					
-1					
-2					
-3					
-4					
-5					

1. What patterns did you notice as you filled in the chart?
2. What do you think the rule is for evaluating powers with **zero exponents**?
3. What do you think the rule is for evaluating powers with **negative exponents**?
4. Use the rules you have discovered to evaluate the following:

a. $x^0 =$ b. $x^{-2} =$

<p><u>EXAMPLES:</u></p> <p>a) $(-4)^2 \cdot (-4)^5$ b) $(2x)^3 \cdot (2x)$ c) $2x^4y^2 \cdot 3x^2y^6$</p>	<p>PRODUCT OF POWERS PROPERTY When finding the product of powers with the same base, _____.</p> <p>$a^m \cdot a^n =$</p>	<p>QUOTIENT OF POWERS PROPERTY When finding the quotient of powers with the same base, _____.</p> <p>$\frac{a^m}{a^n} =$</p>
<p><u>EXAMPLES:</u></p> <p>a) $(3^4)^2$ b) $[(-x)^4]^3$ c) $[(-4)^2 \cdot (-4)^3]^6$</p>	<p>POWER OF A POWER PROPERTY When you raise a power to a power, keep the _____ and multiply the _____.</p> <p>$(a^m)^n =$</p>	<p>POWER OF A PRODUCT When finding a product raised to a power, you find the power of each factor and then multiply.</p> <p>$(a \cdot b)^m =$</p>
<p><u>EXAMPLES:</u></p> <p>a) $\left(\frac{-8}{-2}\right)^5$ b) $(p \div q)^6$ c) $\frac{4^5 \cdot 4^3}{2^2 \cdot 2^6}$</p>	<p>POWER OF A QUOTIENT PROPERTY When finding the quotient of two algebraic expressions, you raise both the numerator and the denominator to the power.</p> <p>$\left(\frac{a}{b}\right)^m = , b \neq 0$</p>	<p>ZERO EXPONENT PROPERTY Any nonzero number raised to the zero power is equal to _____.</p> <p>$a^0 = , a \neq 0$</p>
<p><u>EXAMPLES:</u></p> <p>a) 5^{-2} b) $\frac{x^{-7}}{x^4}$ c) $9m \div 3m^{-2}$</p>	<p>ZERO EXPONENT PROPERTY When finding negative exponent, take the _____ of the base and raise it to the positive power.</p> <p>$a^{-n} = , a \neq 0$</p>	